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Abstract—A new two-dimensional finite-element (FE) eigenmode solver
has been developed, which is suitable for calculating cylindrically sym-
metric modes. The quantity H�=r is used in the code to describe the
electromagnetic fields instead ofH� or rH�, which is preferentially used
in the existing codes, and the new formulation withH�=r is found to show
higher accuracy and smoother convergence with respect to the number
of mesh points. Comparison is also made between linear and quadratic
elements, resulting in remarkably higher accuracy by the latter.

Index Terms—Cavity eigenmode, finite-element method.

I. INTRODUCTION

Cylindrically symmetric cavities are utilized in many radio-
frequency (RF) devices, such as klystrons, RF guns, and various
accelerating structures in particle accelerators. Many computer codes
[1]–[11] have been developed thus far, and are in use for RF cavity
designing for more than 30 years.

For cylindrically symmetric standing-wave modes, probably the
most commonly used code would be the SUPERFISH [2], which
calculates eigenfrequencies and corresponding angular magnetic field
H� at the mesh points using the finite-differential method (FDM) with
triangular meshes. However, depending on the cavity geometry, it is
sometimes not accurate enough or, in other words, takes too much
central processing unit (CPU) time and computer memory to achieve
required accuracy. Since both higher accuracy and less computational
efforts are always important from the viewpoint of saving time and
effort for the users, continuous improvements of greater extent are
called for in specific problems.
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From this viewpoint, a new two-dimensional-code Kyoto Uni-
versity eigenmode solver (KUEMS) has been developed, which is
aimed at improved calculations of cylindrically symmetricTM0 nm

modes applicable to klystron simulations [12]. Instead ofH� or rH�

preferentially used in the existing codes [1]–[3], [7], the KUEMS
uses: the quantityH�=r to describe the electromagnetic fields, which
has the advantage of not requiring any boundary conditions on the
symmetry axis, and the finite-element method (FEM) with quadratic
triangular elements, which has high capability to model arbitrary
structures.

This paper describes the numerical methods used in the KUEMS,
followed by comparisons of the numerical results among the three
different formulations, i.e., withH�=r, H�, and rH�, to show the
advantageous features of this new formulation withH�=r with respect
to accuracy in the eigenfrequencies, and convergence of the electric
field on the symmetry axis. Comparisons between the linear and
quadratic elements are also made to examine the accuracy together
with the SUPERFISH.

II. NUMERICAL METHODS IN THE KUEMS

The numerical methods used in the KUEMS are described in this
section, including the new FE formulation with the quantityH�=r.
The essential difference from the other formulations withH� and
rH� is described in Section II-B.

A. Basic Equations and Weak Formulation

For resonant electromagnetic fields, we can assume electric and
magnetic fieldsEEE andHHH at a timet and locationrrr by

EEE(rrr; t) = eee(rrr) Re[exp(i!t)]; (1a)

HHH(rrr; t) = �0=�0 hhh(rrr Re[i exp(i!t)] (1b)

where�0 and�0 are the permittivity and permeability in free space,
f = !=2� is the resonant frequency, andeee andhhh are the eigenmode
patterns. Then, from Maxwell’s equations in free space, the frequency
and the magnetic field are expressed by the following eigenvalue
problem:

r�r� hhh = k2hhh in 
 (2)

nnn� (r� hhh) =0 on� (3)

and the corresponding electric field is given by

eee =
1

k
r� hhh in 
 (4)

wherek = !=c, the boundary�, and the domain
 are the inner
surface of the cavity wall and its volume, respectively, andnnn is the
unit vector normal to�.

Satisfaction of both (2) and (3) is equivalent to the following
formulation:




vvv � [k2hhh�r� (r� hhh)] dv +
�

vvv � [nnn� (r� hhh)] dS = 0;

for anyvvv (5)

wheredV anddS are a volume element in
 and a surface element on
�, respectively. With Gauss’ divergence theorem, (5) can be reduced
to the following well-known weak formulation [8]:




(r� vvv) � (r� hhh) dV = k2




vvv � hhh dV; for anyvvv: (6)
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B. Choice of the Independent Variable

In the KUEMS, the quantityh�=r is chosen as the independent
variable instead ofh� or rh� preferentially used in the existing codes,
exclusively due to the fact that no special treatment of the symmetry
axis (r = 0) is required as follows.

With � = h�=r andu = v�=r, (6) can be expressed by
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where� is the cross section of the domain
 in z–r plane (hereafter,
this will be referred to as “H=r-formulation”). In contrast, choice of
h = h�; v = v� (“H-formulation”) and choice of� = rh�; w =
rv� (“rH-formulation”) lead, respectively, to the following weak
formulations:
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(9)

It is clearly seen that, for the integration of (8) with the term
vh=r on the left-hand side,h = 0 is always required on the axis
to avoid infinity, and also for (9),r� = 0 is always additionally
required on the axis, both of which are consequently equivalent to
the cylindrically symmetric conditionsh� = er = 0 and the existence
of finite ez on the axis. On the other hand, in thisH=r-formulation,
these requirements are automatically satisfied so long as� andr�
are finite, sinceh�, ez, ander are all given in terms of� by

h� = r� kez = 2�+ r
@�

@r
ker = �r

@�

@z
: (10)

Thus, theH=r-formulation is shown not to require any special
treatments on the symmetry axis, and, with the following additional
reasons, it is applied to the KUEMS as follows.

1) Analytical integration of (7) is easily carried out in the FE
formulation (described in Section II-C), while for the other
formulations, special treatments are required on the axis;

2) H=r-formulation is expected to result in higher accuracy in
the fundamentalTM010 modes sinceh�=r � constant near the
axis;

3) H=r-formulation is found to result in smoother convergence in
calculating the electric field on the axis, as will be shown in
the Section III.

C. FE Formulation

To numerically solve the weak formulation of (7), anN -
dimensional subspace is applied to both the unknown function�
and the test functionu. Suppose� is a linear combination ofN
basis functionsf ig, and an infinite number of test functionsu are
reduced toN test functions. Then, with

�(z; r) =

N

j=1

xj j(z; r) u(z; r) =  i(z; r) (11)

the weak formulation of (7) can be reduced to a Galerkin formulation
N

j=1

aijxj = k2
N

j=1

bijxj ; for any1 � i � N (12)

or an algebraic eigenvalue problem

AAAxxx = k2BBBxxx (13)

where

aij =2�
�
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 j + 4r i j dS (14)

bij =2�
�

r3 i j dS: (15)

The FE formulation is a Galerkin formulation with a particular set
of basis functionsf ig. The KUEMS uses well-known Lagrange-
type quadratic basis functions; the domain� is divided into FE’s��

with N nodes, and the basis function i is defined as:

1)  i = 1 at the nodei;
2)  i = 0 at the others;
3) continuous in�;
4) piecewise smooth in��.

III. N UMERICAL TESTS

To verify the accuracy of the developed KUEMS, calculations
were carried out for analytically solvable modes in a test cavity. The
numerical error from the ideal value is, in general, mainly contributed
by: 1) the error due to inaccurate modeling of geometric shape with
a finite number of elements and 2) the discretization error of the
formulation. To restrict discussions here to the latter one, a pillbox,
whose cross section in thez–r plane has no curvature, is chosen as
the test cavity.

A. Comparison Among Three Different Formulations

To verify the accuracy of theH=r-formulation used in the KUEMS,
calculations were performed using three different formulations,
namely, theH=r-,H-, andrH-formulations with the linear elements.
The structure used here is a pillbox of 1-m radius and length.

Fig. 1 shows the relative errors of eigenfrequenciesf and cavity
voltagesV from the analytic solutions, whereV is defined by

V =
r=0

jez j dz: (16)

As for the frequenciesf , it is found that, as was expected, theH=r-
formulation results in remarkably higher accuracy for the fundamental
TM010 mode than theH- andrH-formulations, but with an almost
similar accuracy for higher modes. However, high accuracy for the
fundamental mode is quite desirable since it is most commonly
utilized in klystrons and RF guns. This advantage results from the fact
that � = h�=r � constant for theTM010 mode near the symmetry
axis.

On the other hand, in the cavity voltagesV , theH=r-formulation
seems to show less accuracy for some modes, e.g.,(TM020 mode in
Fig. 1(c). However, it should be noted that the voltages calculated
with the H=r-formulation are found to converge smoothly asN
increases, while those with theH- and therH-formulations do not.
Smooth convergence is remarkably important since rough conver-
gence would make extrapolation difficult. This advantage also results
from the fact that the quantity� = h�=r used in theH=r-formulation
has a higher degree of freedom around the axis (compared with the
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(a) (b)

(c)

Fig. 1. Relative errors in eigenfrequencies and cavity voltages for (a)
TM010, (b)TM011, and (c)TM020 modes in the pillbox cavity, comparing
three different formulations.

Fig. 2. Relative frequency errors as functions of CPU time (comparing the
linear elements, quadratic elements, and SUPERFISH).

other formulations byh = h� or � = rh�) because no condition is
applied to the axis in theH=r-formulation.

B. Comparison Between Linear and Quadratic Elements

Since the quadratic elements are generally regarded as showing
a higher accuracy than the linear elements for the same number of
nodes, they were actually applied to some eigenmode solvers [3],
[6]–[8] as well as to the present KUEMS. However, it is not obvious
whether they may result in higher accuracy within the same CPU

time, in which the users are very much interested. To make this clear,
comparisons were made between the linear and quadratic elements
with theH=r-formulation for theTM0nm modes in the pillbox. For
comparison, the SUPERFISH, which uses the first-order FDM, is
also applied to the same modes.

The relative frequency errors are found to scale as�f=f /

N�2:0��2:2 for the quadratic elements, while�f=f / N�1:0��1:1

for the linear elements and the SUPERFISH. It is also important that
the CPU timeT is found to increase with the same order for either
the linear or quadratic elements asN increases. Consequently, as
shown in Fig. 2, the quadratic element scheme is found to take the
least CPU time among the three for all the three modes.

IV. SUMMARY

A new two-dimensional code has been developed based on the
FEM, making it ideal for calculating cylindrically symmetric eigen-
modes. The quantityH�=r, which has the advantage of not requiring
any conditions on the symmetry axis, is used to represent the
electromagnetic fields instead ofH� or rH�, which have been used
thus far in the existing codes.

It is found that the new FE formulation withH�=r results in
remarkably higher accuracy in the eigenfrequency of the fundamental
mode, but no less accuracy in the other higher modes. It also results
in smoother convergence of the calculation of the electric field on the
symmetry axis with respect to number of the mesh points.

It is also found that by use of the quadratic elements, faster
convergence can be achieved compared with the linear elements or
the SUPERFISH.

All these results are remarkable from the viewpoint of saving time
and effort for both computers and their users.
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