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Development of an Improved Two-Dimensional
Finite-Element Code for Cylindrically Il NUmERICAL METHODS IN THE KUEMS
Symmetric Eigenmodes The numerical methods used in the KUEMS are described in this
section, including the new FE formulation with the quantiy /».
The essential difference from the other formulations with and
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A. Basic Equations and Weak Formulation

For resonant electromagnetic fields, we can assume electric and

Abstract—A new two-dimensional finite-element (FE) eigenmode solver magnetic fieldsE and H at a timet and locationr by
has been developed, which is suitable for calculating cylindrically sym-

metric modes. The quantity Hy/r is used in the code to describe the E(r.t) =e(r) Re[exp(iwt)], (1a)
electromagnetic fields instead offfy or rHy, which is preferentially used ' i : )
in the existing codes, and the new formulation withHy /7 is found to show H(r,t) = \/eo/po h(r Re[i exp(iwt)] (1b)

higher accuracy and smoother convergence with respect to the number o o
of mesh points. Comparison is also made between linear and quadratic Wherees and o are the permittivity and permeability in free space,

elements, resulting in remarkably higher accuracy by the latter. f = w/2x is the resonant frequency, ancandh are the eigenmode
Index Terms—Cavity eigenmode, finite-element method. patterns. Then, from Maxwell’'s equations in free space, the frequency
and the magnetic field are expressed by the following eigenvalue
problem:
|. INTRODUCTION 0
VxVxh=FhinQ 2

Cylindrically symmetric cavities are utilized in many radio-
frequency (RF) devices, such as klystrons, RF guns, and various nx (Vxh)=00nl ®)
accelerating structures in particle accelerators. Many computer coca?I
[1]-[11] have been developed thus far, and are in use for RF cavity
designing for more than 30 years. e = 1 YV x hin Q 4)

For cylindrically symmetric standing-wave modes, probably the
most commonly used code would be the SUPERFISH [2], whiGhhere t: = w/c, the boundant’, and the domair2 are the inner
calculates eigenfrequencies and corresponding angular magnetic figlgtace of the cavity wall and its volume, respectively, anis the
H, at the mesh points using the finite-differential method (FDM) witynit vector normal tor.
triangular meshes. However, depending on the cavity geometry, it issatisfaction of both (2) and (3) is equivalent to the following
sometimes not accurate enough or, in other words, takes too mygfnulation:
central processing unit (CPU) time and computer memory to achiev: .
required accuracy. Since both higher accuracy and less computatlojzlv [F’h =V x (V x h)] dv + / v-[nX (VXh)]dS =0,
efforts are always important from the viewpoint of saving time and® r
effort for the users, continuous improvements of greater extent are
called for in specific problems.

3 the corresponding electric field is given by

for anyv (5)

wheredV anddS are a volume element i and a surface element on
[, respectively. With Gauss’ divergence theorem, (5) can be reduced
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B. Choice of the Independent Variable or an algebraic eigenvalue problem
In the KUEMS, the quantityhy /r is chosen as the independent ‘
variable instead ok or rhy preferentially used in the existing codes, Az = ’Bz (23)

exclusively due to the fact that no special treatment of the symmetry
axis (r = 0) is required as follows.

| where
With ¢ = ho/r andu = vy /7, (6) can be expressed by
Ou d¢p  Ou d¢ d¢  Ou o o / { 3 <07,/’)i oy | Oy 81/)j)
J — 4+ rud|d a;; =27 r + —
/x |:1 <37 37+3r % )—i—Z < o +0 (D>+4IL!(,/):|(IS j . 9. - ar or
. of  OY; Oy ,
= k* / r*ugdS, foranyu (7) +2r° <u % + OUT 'W) + 47"471’%} s (14)

whereX is the cross section of the domdinin =—r plane (hereafter, ;, — 27 / P2, dS. (15)
this will be referred to asH /r-formulation”). In contrast, choice of >
h = hg,v = vy (“H-formulation”) and choice of = rhg,w =
rve (“r H-formulation”) lead, respectively, to the following weak The FE formulation is a Galerkin formulation with a particular set
formulations: of basis functions{v; }. The KUEMS uses well-known Lagrange-

- ov Oh  Hv Oh 9h v type quadratic basis functions; the domains divided into FE'sYy
/ { <0 75: T3, 3 ) + < ) + —} ds with N nodes, and the basis functian is defined as:

. z 0z r Or or ~ Or

, I 1) ¢; = 1 at the nodei;
=k / rvh dS, for anywv 2) ; = 0 at the others;
= 3) continuous in%;

(8) : : .
4) piecewise smooth iy.
/1 dw 0£+011 98 ds = k* / ﬁIS for any w )P '
vw r \0z 0z  Or ar - T @ yw.
9) ll. NUMERICAL TESTS
It is clearly seen that, for the integration of (8) with the term To Verify the accuracy of the developed KUEMS, calculations
vh/r on the left-hand sidel = 0 is always required on the axis Were carried out for analytically solvable modes in a test cavity. The

to avoid |nf|n|ty’ and also for (g)yf =0is a|WayS addmona”y numerical error from the ideal Value iS, in genel’aL mainly Contributed
required on the axis, both of which are consequently equivalent y: 1) the error due to inaccurate modeling of geometric shape with
the cylindrically symmetric conditionss = ¢, = 0 and the existence @ finite number of elements and 2) the discretization error of the
of finite ¢. on the axis. On the other hand, in tHi&/r-formulation, formulation. To restrict discussions here to the latter one, a pillbox,
these requirements are automatically satisfied so long asd V¢ whose cross section in thew plane has no curvature, is chosen as

are finite, sincehs, e, ande, are all given in terms ob by the test cavity.
, 9¢ _ 09
ho=r¢ kes=2¢+r ar ker = —r az (10) A. Comparison Among Three Different Formulations

Thus, the H/r-formulation is shown not to require any special To verify the accuracy of th& /»-formulation used in the KUEMS,
treatments on the symmetry axis, and, with the following additionablculations were performed using three different formulations,
reasons, it is applied to the KUEMS as follows. namely, theH /r-, H-, andr H -formulations with the linear elements.

1) Analytical integration of (7) is easily carried out in the FEThe structure used here is a pillbox of 1-m radius and length.

formulation (described in Section 1I-C), while for the other Fig. 1 shows the relative errors of eigenfrequendieand cavity
formulations, special treatments are required on the axis; VoltagesV” from the analytic solutions, where€ is defined by

2) H/r-formulation is expected to result in higher accuracy in

the fundamental' Mo modes sincé, /r =~ constant near the V= / le.| d.
axis; r=0
3) H/r-formulation is found to result in smoother convergence in
calculating the electric field on the axis, as will be shown in As for the frequencieg, it is found that, as was expected, tHe/r-

(16)

the Section IIl. formulation results in remarkably higher accuracy for the fundamental
TMo10 mode than thed - and» H -formulations, but with an almost
C. FE Formulation similar accuracy for higher modes. However, high accuracy for the

To numerically solve the weak formulation of (7), a- fu_n_damgntal mode is quite desira_ble since it is most commonly
dimensional subspace is applied to both the unknown funation utilized in klystrons and RF guns. This advantage results from the fact
and the test function.. Supposes is a linear combination ofv  that¢ = ho/r ~ constant for thél'Mqio mode near the symmetry
basis functions{¢;}, and an infinite number of test functionsare @X!S:

reduced tolV test functions. Then, with On the other hand, in the cavity voltag€s the H/v--formulatiqn
N seems to show less accuracy for some modes, @ #1020 mode in
\ , , Fig. 1(c). However, it should be noted that the voltages calculated
=S aar) (e =iz @y H91© g

with the H/r-formulation are found to converge smoothly a5

increases, while those with thg- and ther H-formulations do not.
the weak formulation of (7) can be reduced to a Galerkin formulatioginooth convergence is remarkably important since rough conver-
N N gence would make extrapolation difficult. This advantage also results

Z aa; =k Z bijzj, foranyl <i < N (12)  from the fact that the quantity = h, /r used in theH /»-formulation
J=1 J=1 has a higher degree of freedom around the axis (compared with the
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Fig. 1. Relative errors in eigenfrequencies and cavity voltages for (C

time, in which the users are very much interested. To make this clear,
comparisons were made between the linear and quadratic elements
with the H /r-formulation for theTMop,p, modes in the pilloox. For
comparison, the SUPERFISH, which uses the first-order FDM, is
also applied to the same modes.

The relative frequency errors are found to scale/ag/f
N~20~=22 for the quadratic elements, whilef/f oc N~1-0~~11
for the linear elements and the SUPERFISH. It is also important that
the CPU timeT is found to increase with the same order for either
the linear or quadratic elements a5 increases. Consequently, as
shown in Fig. 2, the quadratic element scheme is found to take the
least CPU time among the three for all the three modes.

IV. SUMMARY

A new two-dimensional code has been developed based on the
FEM, making it ideal for calculating cylindrically symmetric eigen-
modes. The quantity, /r, which has the advantage of not requiring
any conditions on the symmetry axis, is used to represent the
electromagnetic fields instead &fy or » Hy, which have been used
thus far in the existing codes.

It is found that the new FE formulation witl, /» results in
remarkably higher accuracy in the eigenfrequency of the fundamental
mode, but no less accuracy in the other higher modes. It also results
in smoother convergence of the calculation of the electric field on the
symmetry axis with respect to number of the mesh points.

It is also found that by use of the quadratic elements, faster
nvergence can be achieved compared with the linear elements or

TMoi0, (b) TMpi, and (c)TMo29 modes in the pillbox cavity, comparing the SUPERFISH.

three different formulations.
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Fig. 2. Relative frequency errors as functions of CPU time (comparing tth]

linear elements, quadratic elements, and SUP

other formulations by = hy or & = rhy) because no condition is

applied to the axis in thél /r-formulation.

ERFISH).

B. Comparison Between Linear and Quadratic Elements

All these results are remarkable from the viewpoint of saving time
and effort for both computers and their users.
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